MATH 122B: HOMEWORK 1

Suggested due date: August 8th, 2016

(1) Use the definition to find $f^{\prime}(z)$ where $f(z)=\frac{1}{z}, z \neq 0$.
(2) Define the complex sine and cosine function by

$$
\sin (z)=\frac{e^{i z}-e^{-i z}}{2 i}, \quad \text { and } \cos (z)=\frac{e^{i z}+e^{-i z}}{2}, \quad z \in \mathbb{C} .
$$

Verify that $\sin (z)$ and $\cos (z)$ are holomorphic.
(3) Show that there are no holomorphic functions of the form $f=u+i v$ with $u=x^{2}+y^{2}$.
(4) Let $f(z)$ be holomorphic in a domain D. Show that

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}
$$

Note: $|z|^{2}=z \bar{z}$.
(5) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be defined by

$$
f(z)= \begin{cases}\frac{\bar{z}^{2}}{z}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

Verify that the Cauchy-Riemann equations for f are satisfied at $z=0$, but $f^{\prime}(0)$ does not exist.
(6) If g is holomorphic on $D \subset \mathbb{C}$ and f is holomorphic on $g(D)$, show that $h(z)=f(g(z))$ is holomorphic. What if f is not holomorphic?
(7) More challenging exercises Let

$$
f(z)= \begin{cases}e^{-\frac{1}{z^{4}}}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

Show that the Cauchy-Riemann equations hold in \mathbb{C} however $f(z)$ is not differentiable in \mathbb{C}. Where is f holomorphic? [Hint: Compute the partial derivatives at $z=0$ by definition]
(8) Let f be a continuous function on the interval $[0,1]$. From the definition of the derivative, show that the function

$$
F(z)=\int_{0}^{1} e^{i z t} f(t) d t
$$

is holomorphic on \mathbb{C} and compute its derivative. [Hint: The series expansion of $e^{z}=$ $\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$, with the convention $0!=1$.]

Solutions

(1) Compute

$$
\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{1}{z+h}-\frac{1}{z}\right)=-\frac{1}{z^{2}}
$$

(2) We will verify the Cauchy-Riemann equation for

$$
\begin{aligned}
2 \cos (z)=e^{i(x+i y)}+e^{-i(x+i y)} & =e^{-y} e^{i x}+e^{-i x} e^{y} \\
& =e^{-y}(\cos (x)+i \sin (x))+e^{y}(\cos (x)-i \sin (x)) \\
& =\left(e^{-y}+e^{y}\right) \cos (x)+i\left(e^{-y}-e^{y}\right) \sin (x) \\
& =u+i v
\end{aligned}
$$

Then

$$
\begin{aligned}
& u_{x}=-\sin (x)\left(e^{-y}+e^{y}\right)=y_{v} \\
& u_{y}=\cos (x)\left(e^{y}-e^{-y}\right)=-v_{x}
\end{aligned}
$$

(3) Use Cauchy Riemann equations, get contradiction.
(4) Show $\frac{1}{4} \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$.
(5) We need to compute the partial derivatives at 0 , i.e.

$$
\lim _{h \rightarrow 0} \frac{u(h, 0)-u(0,0)}{h}
$$

etc. To find the relevant components, we know $f(x, 0)=u(x, 0)+i v(x, 0)$, so we need to find the real and imaginary parts. Now

$$
f(x, 0)=x=x+i 0=u(x, 0)+i v(x, 0)
$$

so $u(x, 0)=x$ and $v(x, 0)=0$. Repeat this for $f(0, y)$ to compute the other two, then compute the partial derivatives by definition. To show $f^{\prime}(0)$ does not exist, take $h=\varepsilon e^{i \theta}$ with $\varepsilon \rightarrow 0$. Then

$$
\lim _{\varepsilon \rightarrow 0} \frac{f(h)}{h}=e^{-i 4 \theta}
$$

so different θ give different limits.
(6) By chain rule,

$$
\frac{\partial h}{\partial \bar{z}}=\frac{\partial f}{\partial g} \frac{\partial g}{\partial \bar{z}}+\frac{\partial f}{\partial \bar{g}} \frac{\partial \bar{g}}{\partial \bar{z}}=0
$$

(7) The CR equations hold for $z \neq 0$ since it is a composition of holomorphic functions. At 0 , we need to take the partial derivatives by definition. The method is the same as problem 5. It is not differentiable at 0 since it is not even continuous there, for instance consider the path $\varepsilon e^{i \pi / 4}, \varepsilon \rightarrow 0$.
(8) We have

$$
\lim _{h \rightarrow 0}\left|\frac{1}{h}(F(z+h)-F(z))-\int_{0}^{1} i t e^{i z t} f(t) d t\right|=|h| e^{|h|} \int_{0}^{1}\left|f(t) e^{i z t}\right| d t \rightarrow 0
$$

